

Rh(I)-Catalyzed Pauson-Khand Reaction and Cycloisomerization of Allenynes: Selective Preparation of Monocyclic, Bicyclo[m.3.0], and Bicyclo[5.2.0] Ring Systems

Chisato Mukai,* Fuyuhiko Inagaki, Tatsunori Yoshida, Katsuya Yoshitani, Yasuyuki Hara, and Shinji Kitagaki

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

cmukai@kenroku.kanazawa-u.ac.jp

Received April 15, 2005

Rhodium(I)-catalyzed PKR of allenynes was found to be applicable for constructing azabicyclo-[5.3.0]decadienone as well as oxabicyclo-[5.3.0]decadienone frameworks. In addition, a reliable procedure for constructing a 10-monosubstituted bicyclo-[5.3.0]deca-1,7-dien-9-one ring system by the rhodium(I)-catalyzed PKR of allenynes was developed under the condition of 10 atm of CO. Investigation of the rhodium(I)-catalyzed cycloisomerization of 4-phenylsulfonylnona-2,3-dien-8-ynes under nitrogen atmosphere gave the corresponding cyclohexene derivatives, whereas the C₁-homologated allenynes produced cycloheptene derivatives and/or bicyclo-[5.2.0]nonene skeletons depending on the substitution pattern at the allenic terminus. Thus, proper choice of the starting allenynes and reaction conditions led to the selective formation of 2-phenylsulfonylbicyclo-[5.3.0]-deca-1,7-dien-9-ones (Pauson-Khand-type product), 3-alkylidene-1-phenylsulfonyl-2-vinylcyclo-heptene derivatives, and bicyclo-[5.2.0]nonene frameworks.

Introduction

The $\mathrm{Co_2(CO)_8}$ -mediated Pauson–Khand reaction (PKR)¹ is well recognized as a formal [2+2+1] cyclization of three components, an alkyne, an alkene, and carbon monoxide, on the two cobalt atoms of the cluster complex to produce cyclopentenone derivatives. The intramolecular version of this intriguing [2+2+1] cyclization procedure has emerged as one of the most convenient and straightforward methods for the construction of the

bicyclo[m.3.0] skeletons (m=3,4) in one operation. However, this attractive ring-closing method generally is not effective for the synthesis of bicyclo[5.3.0]decenones^{2,3} in large part due to entropic as well as enthalpic factors which could impede the formation of larger rings.⁴ In the previous papers,⁵ we developed a new and efficient procedure for the construction of the bicyclo[5.3.0]decadienone framework **2** ($R^3 = R^4 = H$) based on the Rh(I)-catalyzed intramolecular PKR of 1,1-disubstituted

^{*} To whom correspondence should be addressed. Tel: +81-76-234-4411. Fax: +81-76-234-4410.

⁽¹⁾ For leading reviews, see: (a) Pauson, P. L. In Organometallics in Organic Synthesis. Aspects of a Modern Interdisciplinary Field; de Meijere, A., tom Dieck, H., Eds.; Springer: Berlin, 1988; pp 233–246. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081–1119. (c) Schore, N. E. Org. React. 1991, 40, 1–90. (d) Schore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, pp 1037–1064. (e) Schore, N. E. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Nev York, 1995; Vol. 12, pp 703–739. (f) Frühauf, H.-W. Chem. Rev. 1997, 97, 523–596. (g) Jeong, N. In Transition Metals in Organic Synthesis; Beller, H., Bolm, C., Eds; Wiley-VCH: Weinheim, 1998; Vol. 1, pp 560–577. (h) Geis, O.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1998, 37, 911–914. (i) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297–341. (j) Brummond, K. M.; Kent, J. L. Tetrahedron 2004, 60, 9795–9833.

⁽²⁾ For attempts at constructing the bicyclo[5.3.0] decenone skeleton via the intramolecular PKR of enynes, see: (a) Wender, P. A.; McDonald, F. E. *Tetrahedron Lett.* **1990**, *31*, 3691–3694. (b) Mukai, C.; Sonobe, H.; Kim, J. S.; Hanaoka, M. *J. Org. Chem.* **2000**, *65*, 6654–6650

⁽³⁾ For construction of seven and larger-membered rings via PKR of enynes with an aromatic ring as a template, see: (a) Pérez-Serrano, L.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. Chem. Commun. 2001, 2602—2603. (b) Krafft, M. E.; Fu, Z.; Boñaga, L. V. R. Tetrahedron Lett. 2001, 42, 1427—1431. (c) Lovely, C. J.; Seshadri, H.; Wayland, B. R.; Cordes, A. W. Org. Lett. 2001, 3, 2607—2610. (d) Barluenga, J.; Sanz, R.; Fañanás, F. J. Chem. Eur. J. 1997, 3, 1324—1336

⁽⁴⁾ Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95-102.
(5) (a) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett.
2002, 4, 1755-1758. (b) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376-1385.

SCHEME 1

allenynes 1 ($R^3 = R^4 = H$) possessing a phenylsulfonyl group at the C_1 -position. In fact, allenynes 1 were refluxed in toluene in the presence of a catalytic amount of commercially available $[RhCl(CO)_2]_2^6$ or $[RhCl(CO)_dpp]_2$, prepared from commercially available $[RhCl(cod)]_2$ and 1,3-bis(diphenylphosphino)propane (dppp), under a carbon monoxide atmosphere to afford 2 as the sole product in a moderate to high yield. This ring-closing reaction was shown to occur selectively between the distal double bond of the allenic moiety and the alkyne counterpart of 1 ($R^3 = R^4 = H$), resulting in the exclusive formation of the bicyclo[5.3.0]decadienone framework 2 ($R^3 = R^4 = H$) (Scheme 1).8

Our next endeavors focused on (i) the PKR of allenynes 1 having substituents at the allenic terminus (R^3 and/or R^4 = carbon appendage) to confirm the scope and limitations of this rhodium(I)-catalyzed intramolecular ringclosing reaction, (ii) the cycloisomerization reaction of allenynes 1 (R^3 and/or R^4 = carbon appendage) for construction of other carbon frameworks, and (iii) the application of these reactions to the construction of heterocycles. This paper describes the results of the above three topics in detail. 9

Results and Discussion

Pauson-Khand Reaction of 4-Phenylsulfonylnona-2,3-dien-8-yne Derivatives. At the beginning of this program before considering the ring-closing reaction of allenynes leading to construction of the 10-substituted bicyclo[5.3.0]deca-1,7-dien-9-one frameworks, our first efforts were preliminarily directed toward the PKR of the 4-phenylsulfonylnona-2,3-dien-8-yne derivatives, which would hopefully give the 9-substituted bicyclo[4.3.0]nona-1,6-dien-8-ones. Thus, the required allenynes 5 were easily prepared from commercially available 1,6-heptadiyne (3) in a straightforward manner as shown in Scheme 2. According to the literature precedents, ¹⁰ compound 3 was treated with EtMgBr in THF, and the resulting acetylide was quenched by addition of acetaldehyde and acetone to afford the propargyl alcohol derivatives 4a and 4d in the respective yields of 60% and

SCHEME 2a

3

b
$$(4a: R^1 = R^2 = H)$$
4b: $R^1 = H, R^2 = TMS$
4c: $R^1 = H, R^2 = TMS$
4d: $R^1 = Me, R^2 = TMS$
4f: $R^1 = Me, R^2 = Ph$
5f: $R^1 = Me, R^2 = TMS$
4f: $R^1 = Me, R^2 = Ph$
5f: $R^1 = Me, R^2 = TMS$
5f: $R^1 = Me, R^2 = Ph$
5f: $R^1 = Me, R^2 = Ph$

^a Reaction conditions: (a) EtMgBr, THF, 0 °C, **4a** (60%), **4d** (52%); (b) nBuLi, TMSCl, THF, -78 °C, then 10% HCl, rt, **4b** (76%), **4e** (70%); (c) PhI, Pd(PPh₃)₂Cl₂, CuI, iPr₂NH, THF, rt, **4c** (85%), **4f** (83%); (d) PhSCl, Et₃N, THF, -78 °C; (e) *m*-CPBA, CH₂Cl₂, 0 °C, **5a** (71%); **5b** (70%), **5c** (93%), **5d** (76%), **5e** (72%), **5f** (78%).

52%. Introduction of a silyl group at the triple bond terminus of **4a** and **4d** was realized under conventional conditions to furnish **4b** and **4e** in the respective yields of 76% and 70%. On the other hand, the Sonogashira coupling reaction¹¹ of **4a** and **4d** with iodobenzene in the presence of $Pd(PPh_3)_2Cl_2$ provided **4c** and **4f** in 85 and 83% yields, respectively. Exposure of **4** to benzenesulfenyl chloride $(PhSCl)^{12}$ in THF at -78 °C in the presence of Et₃N effected successive sulfenic ester formation and the [2,3]-sigmatropic rearrangement resulting in the formation of the sulfinyl allenynes, which were subsequently oxidized with m-CPBA to produce **5** (Scheme 2).

With the required allenynes 5 for the ring-closing reaction in hand, these compounds were submitted to the rhodium(I)-catalyzed ring-closing conditions that had been established for the preparation of bicyclo[5.3.0]deca-1,7-dien-9-ones 1 ($R^3 = R^4 = H$).⁵ For the initial evaluation of the rhodium(I)-catalyzed PKR of the allenynes **5** with substitutents at the allenic terminus, a solution of 5a in toluene in the presence of 2.5 mol % of [RhCl-(CO)dppp]213 was refluxed under an atmosphere of CO to give the cyclohexene derivative 7a with a crossedtriene moiety in 95% yield together with a small amount of the bicyclo[4.3.0] nonadienone derivative **6a** (4%) (Table 1, entry 1). The formation of 7a could be rationalized in terms of the intermediacy of the rhodacyclo intermediate **I**, which would collapse to **7a** via the β -hydride elimination of the methyl group at the allenic terminus, 14-18 whereas **6a** must be produced through a CO-insertion step from the common intermediate I. This was not the case for the rhodacyclo intermediate, derived from 1,1disubstituted allenynes (e.g., $\mathbf{1}$, $\mathbf{R}^3 = \mathbf{R}^4 = \mathbf{H}$), 5,6 where no β -hydrogens existed. Trisubstituted allene ${\bf 5c}$ with a

⁽⁶⁾ Brummond and co-workers have reported the $[RhCl(CO)_2]_{2^-}$ catalyzed PKR of allenynes, which involves three successful examples of the formation of the bicyclo[5.3.0]decadienone skeleton: Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org. Lett. **2002**, 4, 1931–1934.

⁽⁷⁾ Sanger, A. R. J. Chem. Soc., Dalton Trans. 1977, 120–129.

⁽⁸⁾ For other examples of the formation of the bicyclo[5.3.0]decane skeleton via transition metal-catalyzed PKR of allenynes, see: (a) Shibata, T.; Koga, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 911–919. (b) Ahmar, M.; Locatelli, C.; Colombier, D.; Cazes, B. Tetrahedron Lett. 1997, 38, 5281–5284.

⁽⁹⁾ Part of this work was published as a preliminary communication: Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. *Tetrahedron Lett.* **2004**, *45*, 4117–4121.

^{(10) (}a) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. **1994**, 116, 4268–4278. (b) Willis, M. S. B.; Danheiser, R. L. J. Am. Chem. Soc. **1998**, 120, 9378–9379.

⁽¹¹⁾ Sonogashira, K.; Tohda, Y.; Hagihara, N. $Tetrahedron\ Lett.$ 1975, $16,\,4467-4470.$

⁽¹²⁾ Horner, L.; Binder, V. Liebigs Ann. Chem. 1972, 757, 33–68. (13) $[RhCl(CO)dppp]_2$ was first used in PKR by Jenog and coworkers, see: (a) Jeong, N.; Lee, S.; Sung, B. K. Organometallics 1998, 17, 3642–3644. (b) Jeong, N.; Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122, 6771–6772.

⁽¹⁴⁾ For reviews on cycloisomerization of enynes, see: (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34–42. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813–834.

⁽¹⁵⁾ For Rh(I)-catalyzed enyne cycloisomerization, see: Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490-6491.

⁽¹⁶⁾ For Rh(I)-catalyzed allenene cycloisomerization, see: (a) Makino, T.; Itoh, K. *Tetrahedron Lett.* **2003**, 44, 6335–6338. (b) Makino, T.; Itoh, K. *J. Org. Chem.* **2004**, 69, 395–405.

TABLE 1. Rh(I)-Catalyzed Ring-Closing Reaction of Compounds 5 under an Atmosphere of CO

a: $R^1 = H$, $R^2 = H$, **b**: $R^1 = H$, $R^2 = TMS$, **c**: $R^1 = H$, $R^2 = Ph$, **d**: $R^1 = Me$, $R^2 = H$, **e**: $R^1 = Me$, $R^2 = TMS$, **f**: $R^1 = Me$, $R^2 = Ph$

1		R^1	$ m R^2$	catalyst	time (h)	product a	and yield (%)
	5a	Н	H	[RhCl(CO)dppp] ₂	0.5	6a (4)	7a (95)
2	5b	H	TMS	[RhCl(CO)dppp] ₂	7	6b (62)	7b (29)
3	5c	H	Ph	[RhCl(CO)dppp] ₂	12	6c (8)	7c (63)
	5a	H	H	$[RhCl(CO)_2]_2$	0.2	6a (59)	7a (30)
$\frac{4}{5}$	5b	H	TMS	$[RhCl(CO)_2]_2$	0.2	6b (55)	7b (43)
6	5c	H	Ph	$[RhCl(CO)_2]_2$	0.2	6c (2)	7c (61)
7	5d	Me	Н	[RhCl(CO)dppp] ₂	6		7d (21)
8	5e	Me	TMS	$[RhCl(CO)dppp]_2$	12	6e (48)	7e (29)
9	$\mathbf{5f}$	Me	Ph	[RhCl(CO)dppp] ₂	12		7f (83)
10	5d	Me	Н	$[RhCl(CO)_2]_2$	2		7d (66)
11	5e	Me	TMS	$[RhCl(CO)_2]_2$	2	6e (26)	7e (71)
12	5f	Me	Ph	$[RhCl(CO)_2]_2$	5		7f (60)

phenyl group at the triple bond terminus behaved similarly to **5a** (entry 3). In contrast to these compounds, 5b provided the Pauson-Khand-type product 6b as a major product (62%) along with 7b (29%) (entry 2). Changing a rhodium(I) catalyst from [RhCl(CO)dppp]₂ to [RhCl(CO)₂]₂¹⁹ brought about some improvement in the PKR of **5a**, resulting in the formation of the bicyclo[4.3.0] derivative 6a in 59% yield as a major product (entry 4). However, no significant improvement in the chemical yield of **6b** and **6c** was realized when [RhCl(CO)₂]₂ was used in the PKR of **5b** and **5c** (entries 5 and 6).²⁰ The tetrasubstituted allenes 5d-f were found not to be suitable substrates for rhodium(I)-catalyzed PKR. Thus, allenes **5d** and **5f** exclusively produced the corresponding cyclohexene deriviatives 7d and 7f irrespective of the rhodium(I) catalyst (entries 7, 9, 10, and 12). The behavior of allene **5e** with a terminal TMS group was different from those of **5d** and **5f**. Compound **5e** provided the Pauson–Khand-type product **6e** in 48% yield as a major product upon exposure to $[RhCl(CO)dppp]_2$ (entry 8).²¹ The ring-closing reaction of **5e** in the presence of $[RhCl(CO)_2]_2$ also gave **6e** in 26% yield, although the predominant production of cyclohexene derivative **7e** was observed in 71% yield (entry 11). The stereochemistry of the *exo*-methylene moiety of cyclohexene derivatives **7** was unambiguously determined to be (*E*) on the basis of ¹H NMR spectral considerations. For example, 13 and 15% enhancement of vinyl protons was recorded when Ha in **7b** was irradiated in an NOE experiment. An NOE experiment with **7f** revealed a 7% enhancement between Ha and R¹ (Me).

We envisaged that increasing the CO pressure in the ring-closing reaction of **5** would facilitate the CO insertion process resulting in the preferential production of the bicyclo[4.3.0]nonadienone skeleton **6** over the β -hydride elimination product 7. To search for what atm of CO pressure was efficient for acceleration of the CO insertion process, the ring-closing reaction of **5e** under several CO pressures was investigated because 5e was the only tetrasubstituted allene which produced the Pauson-Khand-type product 6e (Table 1, entries 8 and 11). Thus, a solution of compound 5e in toluene was heated at 120 °C in the presence of 2.5 mol % of [RhCl(CO)₂]₂ under 5 atm of CO for 4 h to furnish predominantly the desired **6e** in 84% yield along with **7e** in 10% yield (Table 2, entry 2). The selective formation of **6e** was realized by increasing the CO pressure. Further increasing the CO pressure from 5 to 10 atm produced **6e** in the highest chemical yield (93%) (entry 3). A pressure higher than 10 atm of CO was found to be ineffective in comparison with 10 atm of CO. In fact, a slightly lowered chemical yield of

⁽¹⁷⁾ During this ongoing study, a similar Rh(I)-catalyzed allenyne cycloisomerization has been reported independently by two groups. Brummond and co-workers have reported the [RhCl(CO)₂]₂-catalyzed construction of six-membered triene derivatives: (a) Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186–15187. (b) Brummond, K. M.; Mitasev, B. Org. Lett. 2004, 6, 2245–2248. An example of the preparation of seven-membered oxacycle with triene moiety using a RhCl(PPh₃)₃-catalyzed reaction, developed by Shibata and co-workers, has also been reported. Shibata, T.; Takesue, Y.; Kadowaki, S.; Takagi, K. Synlett 2003, 268–270.

⁽¹⁸⁾ For other examples of transition-metal-catalyzed allenyne cycloisomerizations, see: (a) Pagenkopf, B. L.; Belanger, D. B.; O'Mahony, D. J. R.; Livinghouse, T. Synthesis **2000**, 1009–1019. (b) Oh, C. H.; Jung, S. H.; Rhim, C. Y. Tetrahedron Lett. **2001**, 42, 8669–8671

^{(19) [}RhCl(CO)₂]₂ was first used in PKR by Narasaka and coworkers, see: (a) Koga, Y.; Kobayashi, T.; Narasaka, K. *Chem. Lett.* **1998**, 249–250. (b) Kobayashi, T.; Koga, Y.; Narasaka, K. *J. Organomet. Chem.* **2001**, *624*, 73–87.

⁽²⁰⁾ $[RhCl(COD)]_2$ was examined for PKR of compounds $\mathbf{5a-c}$ under an atmosphere of CO gave $\mathbf{6a-c}$ (21–65%) and $\mathbf{7a-c}$ (25–58%). No significant difference from $[RhCl(CO)dppp]_2$ and $[RhCl(CO)_2]_2$ could be observed

⁽²¹⁾ Compound **6e** (81%) was predominantly formed along with **7e** (18%) when treated with 2.5 mol % of [RhCl(COD)]₂.

TABLE 2. Rh(I)-Catalyzed Ring-Closing Reaction of Compounds 5e under CO Pressure

	CO pressure				ct and d (%)
entry	(atm)	catalyst	time (h)	6e	7e
1	1	$[RhCl(CO)_2]_2$	2	26	73
2	5	$[RhCl(CO)_2]_2$	4	84	10
3	10	$[RhCl(CO)_2]_2$	5	93	5
4	20	$[RhCl(CO)_2]_2$	9	87	6
5	20	$[RhCl(CO)dppp]_2$	20	2	21

TABLE 3. Rh(I)-Catalyzed Ring-Closing Reaction of Compounds 5a-d in the Presence of $[RhCl(CO)_2]_2$ under 10 atm of CO Pressure

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	time (h)	product and yield (%	
1	5a	Н	Н	0.3	6a (65)	7a (23)
2	5 b	Η	TMS	0.5	6b (72)	7b (25)
3	5c	Η	Ph	0.3	6c (26)	7c (56)
4	5d	Me	H	6		7d (57)

6e (87%) was observed when the ring-closing reaction was performed under 20 atm CO with otherwise identical conditions (entry 4).²² [RhCl(CO)dppp]₂ gave a trace amount of **6e** (2%) (entry 5).

The Pauson-Khand-type compound, [4.3.0] nonadienone derivative **6e**, was obtained in 93% yield upon exposure of tetrasubstituted allenyne **5e** to 2.5mol % of [RhCl-(CO)₂]₂ under 10 atm of CO. Therefore, we next examined application of the optimized conditions to other 4-phenylsulfonylnona-2,3-dien-8-yne derivatives. The results are presented in Table 3. As can be seen in Table 3, preferential formation of the Pauson-Khand-type products 6a and 6b could be attained (entries 1 and 2), although the selectivity was much lower than that of 5e where the Pauson-Khand-type compound 6e was formed in an almost exclusive manner. In the case of **5c**, the bicyclic derivative 6c was no longer a major product (entry 3). In addition, **6d** could not be isolated from the reaction mixture (entry 4). Thus, it turned out that increasing the CO pressure (10 atm) in the ring-closing reaction of trisubstituted allenynes 5 favored Pauson-Khand-type products **6** over β -elimination compounds **7**, compared with those under an atmosphere of CO. In the cases of tetrasubstituted allenynes 5, however, the formation of Pauson-Khand-type products 6 seemed to be unfavorable even under 10 atm of CO except for the case of **5e**.

SCHEME 3a

8

$$PhO_2S$$
 PhO_2S
 P

^a Reaction conditions: (a) EtMgBr, THF, 0 °C, **9a** (58%); (b) nBuLi, TMSCl, THF, -78 °C, then 10% HCl, rt, **9b** (85% from **9a**), **9d** (41% from **8**), **9e** (47% from **8**), **9f** (40% from **8**); (c) PhI, Pd(PPh₃)₂Cl₂, CuI, iPr₂NH, THF, rt, **9c** (95%); (d) PhSCl, Et₃N, THF, -78 °C; (e) m-CPBA, CH₂Cl₂, 0 °C, **10a** (65%), **10b** (77%), **10c** (67%), **10d** (88%), **10e** (87%), **10f** (88%).

Preparation of 10-Substituted 2-Phenylsulfonylbicyclo[5.3.0]deca-1,7-dien-9-ones by Pauson—Khand Reaction. By taking advantage of the optimized conditions for the PKR of 4-phenylsulfonylnona-2,3-dien-8-ynes 5, the formation of 10-substituted bicyclo[5.3.0]-decadienone frameworks from trisubstituted allenes 10 was investigated. According to the procedure described for the preparation of 5 from 3, commercially available 1,7-octadiyne (8) was converted into the corresponding propargyl alcohol derivatives 9, which were then submitted to [2,3]-sigmatropic rearrangement and oxidation to provide six trisubstituted allenes 10 as depicted in Scheme 3.

Upon exposure to the optimized conditions (2.5 mol % of [RhCl(CO)₂]₂ under 10 atm of CO in toluene at 120°C), 10a predominantly produced 10-methylbicyclo[5.3.0]deca-1,7-dien-9-one **11a**, but the yield was fairly low (17%) (Table 4, entry 1). Similar congeners possessing TMS or a phenyl group at the triple bond terminus, 10b and 10c, gave the corresponding bicyclic compounds 11b and 11c in high yield in a highly selective manner (entries 2 and 3). Furthermore, exclusive construction of 10-butyl-, 10benzyl-, and 10-benzyloxymethylbicyclo[5.3.0]decadienone skeletons **11d**-**f** was realized in acceptable yield (entries 4-6). In these cases, the formation of cycloheptene derivatives **12d**-**f** could be completely suppressed. Compounds 10a without a substituent at the triple bond terminus furnished 11a in a low yield (entry 1). However, 11a might be prepared in an acceptable yield via the TMS-congener 11b because the TMS group can be regarded as a surrogate for H.²³ The ring-closing reaction of 10 under an atmosphere of CO was examined as a control experiment (entries 7-13), where the predominant formation of cycloheptene derivatives 12 was consistently observed except for the benzyl congener 10e.

1-Methyl-4-phenylsulfonyldeca-2,3-dien-9-ynes **14** (tetrasubstituted allenes) were prepared from **8** via diynes **13** (Scheme 4) and subsequently exposed to the best conditions so far ($[RhCl(CO)_2]_2$ under 10 atm of CO in toluene at 120 °C). However, Pauson–Khand-type prod-

^{(22) 2.5} mol % of [RhCl(COD)]₂ catalyzed PKR of **5e** under 10 atm of CO to give **6e** in 87% yield along with a small amount of **7e** (5%). When **5e** was treated with 2.5 mol % of [RhCl(COD)]₂ under 20 atm of CO, **6e** was obtained in 81% yield along with **7e** in 15% yield.

^{(23) (}a) Utimoto, K.; Kitai, M.; Nozaki, H. Tetrahedron Lett. 1975, 2825–2828. (b) Büchi, G.; Wüest, H. Tetrahedron Lett. 1977, 4305–4306. (c) Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1983, 48, 4113–4116.

TABLE 4. Rh(I)-Catalyzed PKR of Compounds 10 under 10 atm of CO

a: $R^1 = R^2 = H$; b: $R^1 = H$, $R^2 = TMS$, c: $R^1 = H$, $R^2 = Ph$; d: $R^1 = {}^nPr$, $R^2 = TMS$; e: $R^1 = Ph$, $R^2 = TMS$; f: $R^1 = Ph$, $R^2 = Ph$

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	CO (atm)	time (h)		ct and d (%)
1	10a	Н	Н	10	3	11a (17)	12a (2)
2	10b	H	TMS	10	13	11b (79)	12b (8)
3	10c	H	Ph	10	6	11c (80)	12c (8)
4	10d	nPr	TMS	10^b	13	11d (67)	
5	10e	Ph	TMS	10^b	12	11e (86)	
6	10 f	BnO	TMS	10	6	11f (91)	
7	10a	H	H	1^c	1	11a (4)	12a (77)
8	10a	H	H	$1^{c,d}$	15	11b (7)	12a (43)
9	10b	H	TMS	1^c	3	11b (19)	12b (68)
10	10b	H	TMS	$1^{c,d}$	6	11b (37)	12b (47)
11	10c	H	Ph	1^c	4	11c (14)	12c (62)
12	10d	nPr	TMS	1^c	5	11d (24)	12d (70)e
13	10e	Ph	TMS	1^c	6	11e (79)	12e (7) ^f

 a Bath temperature. b 10 mol% of [RhCl(CO)_2]_2 was used. c Refluxed in toluene. d [RhCl(CO)dppp]_2 was used instead of [RhCl(CO)_2]_2. e A mixture of (E)- and (Z)-isomers was obtained in a ratio of 4 to 1. f A mixture of (E)- and (Z)-isomers was obtained in a ratio of 3 to 1.

SCHEME 4a

^a Reaction conditions: (a) EtMgBr, THF, 0 °C, **13a** (54%); (b) nBuLi, TMSCl,THF, -78 °C, then 10% HCl, rt, **13b** (68%); (c) PhI, Pd(PPh₃)₂Cl₂, CuI, iPr₂NH, THF, rt, **13c** (92%); (d) PhSCl, Et₃N, THF, -78 °C; (e) m-CPBA, CH₂Cl₂, 0 °C, **14a** (73%), **14b** (81%), **14c** (77%); (f) 2.5 mol % [RhCl(CO)₂]₂, toluene, CO (10 atm), 120 °C, **15a** (6%), **15b** (14%) [recovery of **14b** (20%)], **15c** (69%)

ucts could not be detected in the reaction mixture. Production of cycloheptene frameworks $15a,b^{24}$ in low yield was observed instead. In the case of the phenyl congener 14c, the triene derivative 15c was formed in good yield (69%). The formation of the triene skeleton 15 was consistent with that observed in the ring-closing reaction of 1-methylnona-2,3-dien-8-yne derivative 5d under 10 atm of CO pressure, where cyclohexene derivative 7d was exclusively produced (see Table 3). On the

SCHEME 5^a

^a Reaction conditions: (a) DEAD, PPh₃, THF, 0 °C to rt; (b) PPTS, EtOH, 55 °C, **21a** (53%), **21b** (37%), **21d** (63%), **21e** (47%), **21g** (52%), **24a** (92% from **18**), **24b** (36% from **18** via **23a**); (c) PhI, Pd(PPh₃)₂Cl₂, CuI, iPr₂NH, THF, rt, **21c** (88%), **21f** (85%); (d) PhSCl, Et₃N, THF, −78 °C; (e) m-CPBA, CH₂Cl₂, 0 °C, **22a** (72%), **22b** (91%), **22c** (86%), **22d** (81%), **22e** (95%), **22f** (88%), **22g** (94%), **25a** (82%), **25b** (89%); (f) tBuOK, THF, 0 °C

basis of these results obtained in Table 4 and Scheme 4 in combination with those in Table 3, it might be concluded that $[RhCl(CO)_2]_2$ -catalyzed the intramolecular PKR of trisubstituted allenes under 10 atm of CO proceeded selectively to afford the corresponding 10-monosubstituted 2-phenylsulfonylbicyclo[5.3.0]deca-1,7-dien-9-ones 11 in reasonable yield. However, tetrasubstituted allenes were shown to be generally not suitable substrates for rhodium(I)-catalyzed PKR.

Application of rhodium(I)-catalyzed PKR to the construction of azabicyclo as well as oxabicyclo[5.3.0] ring systems was the next subject in this investigation. To this end, the starting allenvnes were synthesized by conventional means as depicted in Scheme 5. Condensation of N-tosylpropargylamides 16^{17a} and 17^{25} with homopropargyl alcohols 18-20²⁶ under the Mitsunobu conditions^{18a} gave the corresponding condensed products, which were treated with PPTS in EtOH to afford 21. On the other hand, the oxygen congeners 24 were prepared from homopropargyl alcohol 18 via the Williamson ether synthesis. The diyne derivatives **21a**–**g** and **24a**,**b** were then exposed to the two-step conditions for transformation of the propargyl alcohol moiety into a phenylsulfonylallene group to provide the corresponding aza-allenynes **22a**-**g** and oxa-allenynes **25a**,**b**, respectively.

According to the previously reported procedure for the PKR of 1,1-disubstituted allenes,⁵ the *N*-tosylamide derivatives **22a**-**c** were exposed to a rhodium(I) catalyst in refluxing toluene under an atmosphere of CO to afford the desired azabicyclo[5.3.0]decadienone derivatives **26a**-**c** in high yield (Table 5, entries 1–6). Similarly, the oxygen

^{(24) (}E)-Stereochemistry of **15** was determined on the basis of NOE experiments. For instance, 3.4% enhancement of vinyl protons and 1.5% enhancement of methyl group were recorded when Ha of **15c** was irradiated.

⁽²⁵⁾ Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. **2002**, 124, 5025–5036.

^{(26) (}a) Landor, P. D.; Landor, S. R.; Pepper, E. S. *J. Chem. Soc. C* **1967**, 185–189. (b) Claesson, A.; Tämnefors, I.; Olsson, L. I. *Tetrahedron Lett.* **1975**, *16*, 1509–1512. (c) Kim, H. J.; Jang, J. Y.; Chung, K. H.; Lee, J. H. *Biosci. Biotechnol. Biochem.* **1999**, *63*, 494–499.

TABLE 5. Rh(I)-Catalyzed Ring-Closing Reaction of Compounds 22a-c and 25a,b under an Atmosphere of CO

entry	substrate	X	R	catalyst	time (h)	product and yield (%)
1	22a	NTs	Н	[RhCl(CO)dppp] ₂	1	26a (89)
2	22b	NTs	TMS	[RhCl(CO)dppp] ₂	1	26b (99)
3	22c	NTs	Ph	[RhCl(CO)dppp] ₂	1	26c (94)
4	22a	NTs	Η	$[RhCl(CO)_2]_2$	1	26a (67)
5	22b	NTs	TMS	$[RhCl(CO)_2]_2$	1	26b (84)
6	22c	NTs	Ph	$[RhCl(CO)_2]_2$	1	26c (94)
7	25a	O	H	[RhCl(CO)dppp] ₂	1	27a (66)
8	25b	O	TMS	[RhCl(CO)dppp] ₂	4	27b (81)
9	25a	O	H	$[RhCl(CO)_2]_2$	2	27a (59)
10	25b	O	TMS	$[RhCl(CO)_2]_2$	1	27b (69)

SCHEME 6

congeners **25a,b** produced the corresponding oxabicyclo-[5.3.0] decadienone compounds **27a,b** in good yield (entries 7–10). The chemical yields in the preparation of the azabicyclic frameworks seemed to be generally higher than those of oxabicyclic ones. Both $[RhCl(CO)dpp]_2$ and $[RhCl(CO)_2]_2$ catalysts served as superior catalysts for this ring-closing reaction under an atmosphere of CO. In particular, the former was consistently more effective than the latter. This result is in good accordance with the previously observed tendency⁵ in the PKR of allenynes **1** ($R^3 = R^4 = H$).

[RhCl(CO)dpppl₂-catalyzed PKR of the tosylamide derivative **22e** with a trisubstituted-allenvl moiety was carried out under the aforementioned conditions (10 atm of CO in toluene at 120 °C), described for the selective preparation of the bicyclo[5.3.0]decadienone skeleton, to produce the desired product 28 in 86% yield (Scheme 6). The corresponding triene compound could not be found in more than trace quantities in the reaction mixture. The phenyl congener **22f** afforded the azabicyclic product 29 in rather lower yield (55%) along with the triene derivative 30 in 14% yield. However, compound 22d without a substituent at the triple bond terminus gave an intractable mixture in which neither the azabicyclic product nor the triene derivative could be detected. The PKR of tetrasubstituted allenyne 22g under 10 atm of CO was fruitless, as can be predicted based on the results of 14 in Scheme 4. Interestingly, a similar PKR of 22g under an atmosphere of CO provided 31 in 27% yield as

TABLE 6. Rh(I)-Catalyzed Cycloisermerization of Compounds 5 under an Atmosphere of N₂

a: $R^1 = H$, $R^2 = H$, **b**: $R^1 = H$, $R^2 = TMS$, **c**: $R^1 = H$, $R^2 = Ph$, **d**: $R^1 = Me$, $R^2 = H$, **e**: $R^1 = Me$, $R^2 = TMS$, **f**: $R^1 = Me$, $R^2 = Ph$

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	catalyst	time (h)	product and yield (%)
1	5a	Н	Н	$[RhCl(CO)dppp]_2$	2	7a (95)
2	5 b	Η	TMS	$[RhCl(CO)dppp]_2$	12	7b (74)
3	5c	Η	Ph	$[RhCl(CO)dppp]_2$	0.2	7c (89)
4	5a	Η	\mathbf{H}	$[RhCl(CO)_2]_2$	0.2	7a (70)
5	5 b	Η	TMS	$[RhCl(CO)_2]_2$	2	7b $(73)^a$
6	5c	Η	Ph	$[RhCl(CO)_2]_2$	0.2	7c (59)
7	5d	Me	H	$[RhCl(CO)dppp]_2$	3	7d $(58)^b$
8	5e	Me	TMS	[RhCl(CO)dppp] ₂	5	7e (92)
9	5f	Me	Ph	$[RhCl(CO)_2]_2$	7	$7f(78)^c$
10	5 d	Me	\mathbf{H}	$[RhCl(CO)_2]_2$	3	7d (93)
11	5e	Me	TMS	$[RhCl(CO)_2]_2$	5	$7e (57)^{d,e}$
12	5f	Me	Ph	$[RhCl(CO)_2]_2$	7	7f (79) ^f

^a Compound **6b** was obtained in 10% yield. ^b Compound **5d** was recovered in 4% yield. ^c Compound **5f** was recovered in 5% yield. ^d Compound **6e** was obtained in 5% yield. ^e Compound **5e** was recovered in 17% yield. ^f Compound **5f** was recovered in 11% yield.

a minor product along with the triene derivative **32** (46%). This behavior might be the same as that of **5e** (Table 1, entry 11). Thus, the rhodium(I)-catalyzed PKR of not only 1,1-disubstituted but also 1,1,3-trisubstituted allenynes can be applicable to the construction of the corresponding azabicyclo- as well as oxabicyclo[5.3.0]-deca-1,7-diene-9-one frameworks in reasonable yield.

Cycloisomerization of 4-Phenylsulfonylnona-2,3dien-8-yne and 4-Phenylsulfonyldeca-2,3-dien-9-yne Derivatives under Nitrogen Atmosphere. In the rhodium(I)-catalyzed PKR of 4-phenylsulfonylnona-2,3dien-8-vne derivatives 5 under an atmosphere of CO (previously reported conditions),⁵ undesirable cyclohexene compounds 7 with a crossed-triene moiety were isolated as a major product. On the other hand, preferential formation of bicyclo[4.3.0]nonadienones 6 as well as bicyclo[5.3.0]decadienones 11 under the Pauson-Khand conditions was realized by increasing the CO pressure (1-10 atm). Thus, the next phase of this program involved development of a reliable procedure for the selective construction of 3-alkylidene-1-phenylsulfonyl-2-vinylcyclohex-1-ene derivatives 7. A solution of trisubstituted allene 5a in toluene was refluxed in the presence of 2.5 mol % of [RhCl(CO)dppp]₂ under an atmosphere of nitrogen to give 7a in 95% yield as a sole product (Table 6, entry 1). A similar treatment of compounds **5b** and **5c** afforded **7b** and **7c** in respective yields of 74% and 89% (entries 2 and 3). [RhCl(CO)₂]₂ also worked well to furnish the corresponding triene derivatives 7a-c (entries 4-6).27 In the case of **5b** with [RhCl(CO)₂]₂, unexpected formation of bicyclo[4.3.0] derivative **6b** (10%) was recorded (entry 5). Presumably, one of two carbon monoxide ligands on the rhodium catalyst would, in part,

⁽²⁷⁾ $[RhCl(COD)_2]_2$ could be used for transformation of $\bf 5a-c$ into $\bf 7a-c$ in slightly lower yield $[\bf 7a$ (69%), $\bf 7b$ (66%), and $\bf 7c$ (44%)].

TABLE 7. Rh(I)-Catalyzed Cycloisomerization of Compounds 10 under an Atmosphere of N₂

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	catalyst	time (h)	product and yield (%)
1	10a	Н	Н	[RhCl(CO)dppp] ₂	2	12a (82)
2	10b	Η	TMS	$[RhCl(CO)dppp]_2$	6	12b (83)
3	10c	Η	Ph	$[RhCl(CO)dppp]_2^a$	5	12c (29)
4	10a	Η	H	$[RhCl(CO)_2]_2$	6	12a (78)
5	10b	Η	TMS	$[RhCl(CO)_2]_2$	6	12b (69) ^b
6	10c	Η	Ph	$[RhCl(CO)_2]_2$	9	12c (65)
7	10d	nPr	TMS	$[RhCl(CO)_2]_2^a$	5	$12d (65)^c$
8	10e	Ph	TMS	$[RhCl(CO)_2]_2^d$	5	12e $(65)^a$

 a 5 mol% of catalyst was used. b The reported yield (59%) in a preliminary communication was improved. c A mixture of (E)- and (Z)-pentenyl isomers, in a ratio of 4 to 1, was obtained. The ratio was determined by $^1\mathrm{H}$ NMR. d 10 mol% of catalyst was used. f A mixture of (E)- and (Z)-trimethylsilylmethylidene isomers, in a ratio of 3 to 5, was obtained. The ratio was determined by $^1\mathrm{H}$ NMR.

participate in the ring-closing reaction. Tetrasubstituted allenes $\mathbf{5d-f}$ were exposed to both catalysts under an atmosphere of nitrogen to afford the corresponding cyclohexene derivatives $\mathbf{7d-f}$ in acceptable yields as shown in Table 6. [RhCl(COD)]₂ was found to be a less effective catalyst, in comparison with the above two catalysts.²⁸ Compound $\mathbf{5e}$ provided a small amount of the bicyclic derivative $\mathbf{6e}$ (5%) when treated with [RhCl(CO)₂]₂ (entry 11), which is in accordance with the result of entry 5.

By analogy to the selective transformation of allenes **5** into the cyclohexene derivatives **7** under an atmosphere of nitrogen, the C₁-homologated trisubstituted allenes **10a,b** were exposed to 2.5 mol % of [RhCl(CO)dppp]₂ in refluxing toluene under an atmosphere of nitrogen to afford the cychoheptene derivatives 12a,b in high yield as expected (Table 7, entries 1 and 2). When 10c was submitted to the ring-closing conditions with [RhCl(CO)dppp]2, the reaction rate was rather slow and 12c was formed in 29% yield along with the recovery of the starting material **10c** (51%) (entry 3). [RhCl(CO)₂]₂ consistently produced the corresponding cycoheptene derivatives 12a-c in reasonable yields (entries 4-6). The other two substrates 10d,e also afforded the corresponding cycloheptene derivatives 12d,e in good yields when treated with [RhCl(CO)₂]₂ (entries 7 and 8).²⁹ The nitrogen congeners 22d-f with a trisubstituted allenyl moiety underwent similar Rh(I)-catalyzed cycloisomerization reaction under the standard conditions to give the corresponding tetrahydroazepines 33, 34, and 30^{30} as a sole product (Table 8).

TABLE 8. Rh(I)-Catalyzed Cycloisomerization of Compounds 22d-f under an Atmosphere of N_2

$$\begin{array}{c|c} R & 2.5 \text{mol}\% \\ Rh \ \text{catalyst} \\ \hline 1 \text{atm of N}_2 \\ \hline 1 \text{solutione reflux} \\ \hline 22 \text{d} \sim f \\ \text{d: R = H, e: R = TMS, f: R = Ph} \\ \end{array} \begin{array}{c} 2.5 \text{mol}\% \\ 1 \text{atm of N}_2 \\ \hline 1 \text{solutione reflux} \\ \hline 33 \ : R = H \\ 34 \ : R = TMS \\ 30 \ : R = Ph \\ \hline \end{array}$$

entry	substrate	\mathbb{R}^1	${ m R}^2$	catalyst	time (h)	product and yield (%)
1	22d	Н	Н	[RhCl(CO)dppp] ₂	1	33 (97)
2	22e	Η	TMS	[RhCl(CO)dppp] ₂	4	34 (67)
3	22f	Η	Ph	[RhCl(CO)dppp] ₂	4	30 (48)
4	22d	Η	Η	$[RhCl(CO)dppp]_2$	2	33 (72)
5	22e	Η	TMS	$[RhCl(CO)dppp]_2$	2	34 (91)
6	22f	Η	Ph	$[RhCl(CO)dppp]_2 \\$	4	30 (74)

TABLE 9. Rh(I)-Catalyzed Cycloisomerization of Compounds 14 under an Atmosphere of N_2

$$\begin{array}{c} R \\ PhO_2S \\ \hline \\ 14 \\ \hline \\ a: R = H, b: R = TMS, c: R = Ph \\ \end{array}$$

entry	substrate	R	catalyst	time (h)	product and yield (%)
1	14a	Н	[RhCl(CO)dppp] ₂	12	$35a (22)^a$
2	14b	TMS	[RhCl(CO)dppp] ₂	48	35b $(19)^b$
3	14c	Ph	[RhCl(CO)dppp] ₂	120	35c (49)
4	14a	Η	$[RhCl(CO)_2]_2$	6	35a (58)
5	14b	TMS	$[RhCl(CO)_2]_2$	6	15b (14) +
					$35b (34)^c$
6	14c	Ph	$[RhCl(CO)_2]_2$	12	15c(12) +
					$35c (60)^d$
7	14c	Ph	$[RhCl(CO)_2]_2$	120	35c (77)
8	14c	Ph	$[RhCl(CO)_2]_2^e$	20	15c (62)
9	14c	Ph	$[RhCl(CO)_2]_2^f$	12	15c(10) +
					35c (80)

 a Compound **14a** was recovered in 2% yield. b Compound **14b** was recovered in 49% yield. c Compound **14b** was recovered in 16% yield. d Compound **14c** was recovered in 24% yield. e Heated at 80 °C. f Refluxed in xylene.

We next investigated rhodium(I)-catalyzed cycloisomerization of 2-methyl-4-phenylsulfonyldeca-2,3-dien-9-yne derivatives (tetrasubstituted allenes), which would afford the cycloheptene skeleton possessing a 2-propenyl moiety at the C2-position. Thus, allenyne 14a was refluxed in toluene for 12 h in the presence of 2.5 mol % of [RhCl-(CO)dppp]₂ to give unexpectedly the bicyclo[5.2.0]nonene compound 35a in 22% yield instead of the triene derivative 15a along with the recovery of a small amount of the starting material **14a** (2%) (Table 9, entry 1). Bicyclo-[5.2.0] frameworks **35b,c** were also formed under similar conditions, but the corresponding triene derivatives 15b,c could not be isolated from the reaction mixture (entries 2 and 3). [RhCl(CO)₂]₂ catalyzed the formation of the bicyclo[5.2.0] skeleton to afford **35a-c** more effectively (entries 4-6). The structure of **35** was elucidated by spectral evidence.³¹ Furthermore, X-ray crystallographic

⁽²⁸⁾ Compounds $\bf 7d$ (6%), $\bf 7e$ (31%), and $\bf 7f$ (48%) were obtained with recovery of the starting materials $\bf 5d$ (72%), $\bf 5e$ (51%), and $\bf 5f$ (36%), respectively.

⁽²⁹⁾ $[RhCl(COD)_2]_2$ was found not to be a suitable catalyst for transformation of **10** into **12** [12a (30%), 12b (13%), and 12c (16%)].

⁽³⁰⁾ The stereochemistry of tetrahydroazepine derivatives was determined by comparison of $^1\mathrm{H}$ NMR spectra with those of carbon congeners.

analysis³² of **35c** unambiguously established its structure as depicted. To obtain more information on the transformation of alleynes 14 into 35, several experiments were performed using phenyl derivative 14c. As mentioned earlier, 14c produced 35c (60%) and the triene derivative 15c (12%) along with the starting 14c (24%) upon exposure to [RhCl(CO)₂]₂ in refluxing toluene for 12 h (entry 6). When the reaction time was prolonged to 120 h under the same conditions, exclusive formation of 35c in 77% was observed (entry 7). On the other hand, the cycloisomerization reaction of 14c at lower reaction temperature (80 °C in toluene) for 20 h furnished the triene compound **15c** in 62% yield as a sole product (entry 8). Refluxing in xylene fairly shortened the reaction time (12 h) leading to the formation of **35c** in 80% yield along with **15c** in 10% yield (entry 9).

The formation of **35** can be attributable to a thermal 4π -electrocyclic reaction³³ of the primarily formed triene derivatives 15, and transformation of the latter to the former seemed to require refluxing temperature in xylene. Thus, compound 15c was refluxed in xylene for 9 h in the absence of a rhodium catalyst to give a mixture of 15c and 35c in a ratio of 30:70.34 A similar mixture (15c/35c = 30:70) was obtained when 35c was exposed to xylene refluxing conditions for 9 h. These transformation reactions suggested that the bicyclo[5.2.0]nonene framework is thermodynamically more stable than the corresponding triene derivative.³⁵ Rhodium catalyst was found to accelerate the conversion of 15 into 35. As a matter of fact, a solution of 15c in xylene was refluxed for 9 h in the presence of 2.5 mol % of [RhCl(CO)₂]₂ to furnish ${\bf 35c}$ in 60% yield along with the recovery of ${\bf 15c}$ in 11% yield.

Some additional tetrasubstituted allenes 36³⁶ with a terminal methyl group were exposed to 2.5 mol % of [RhCl(CO)₂]₂ in refluxing xylene. The results were summarized in Table 10. Tetrasubstituted allene 36a possessing a phenyl group at the allenic terminus gave the bicyclo[5.2.0] compound 37a in 88% yield (Table 10, entry 1). The electronic property on the aromatic ring of an allenic terminus did not affect this transformation. Thus, p-methoxy and p-nitro derivatives **36b,c** provided the corresponding bicyclic compounds 37b,c in high yield (entries 2 and 3). Compound **36d** having an ethoxycarbonyl group instead of a phenyl group also produced the bicyclo[5.2.0] derivative **37d** in rather lower yield (19%). The triene derivative **38d** was obtained as a major product even for a prolonged reaction time (12 h) (entry 4). A terminal hydroxyl group tolerates this transformation to give 37e in 21% yield along with a small amount of 38e (entry 5).

TABLE 10. Rh(I)-Catalyzed Cycloisomerization of Compounds 36 under an Atmosphere of N₂

 a Refluxed in xylene for 12 h. b Compounds **37d** (12%) and **38d** (56%) were obtained when refluxed in xylene for 1 h. 9

SCHEME 7

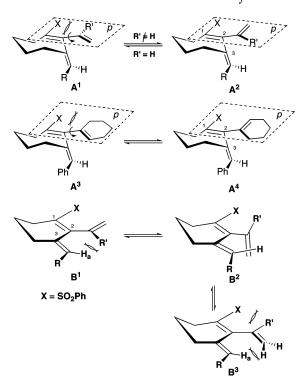
The tetrasubstituted allene **22g** having an *N*-tosylamide functionality behaved similarly to the carbon congeners **14** and **36**. The exclusive construction of the tetrahydroazepine derivative **32** in 81% yield was observed when **22g** was refluxed in toluene in the presence of 2.5 mol % of $[RhCl(CO)_2]_2$, whereas the bicyclo[5.2.0]-nonene framework **39** (54%) was formed in a highly selective manner under xylene refluxing conditions (Scheme 7).

Interestingly, exclusive formation of triene derivatives **41** having a trisubstituted olefin functionality at the C₂position was observed when the allene 40 with a diethyl group at the allenic terminus was submitted to xylene refluxing conditions (Scheme 8). The corresponding bicyclo[5.2.0] derivative 42 could not be detected in the reaction mixture. The cyclohexyl derivative 43 also produced 44 in a high yield instead of 45. These observations were in sharp contrast to those observed in the cycloisomerization of compounds 14, 22g, and 36 under refluxing xylene conditions, where the formation of bicyclo[5.2.0] derivatives via the intermediacy of the triene derivatives commonly having a 1,1-disubstituted olefin functionality at the C2-position was observed. On the other hand, no formation of bicyclo[4.2.0]nonene skeleton 46 could be detected in the cycloisomerization reaction of 4-phenylsulfonylnona-2,3-dien-8-yne derivatives 5 under toluene refluxing conditions (see Table 6). The cyclohexene derivatives 7 with a vinyl or a propenyl group at the C₂-position, which are regarded as presumable intermediates for the construction of bicyclo[4.2.0]nonene derivatives 46, were refluxed in xylene to afford only an intractable mixture or the recovery of 7. In addition, conversion of the cycloheptene derivatives 12 into the bicyclo[5.2.0] derivatives 37 could not be realized (Scheme 8).37

⁽³¹⁾ For example, an NOE experiment of $\bf 35b$ showed 6.1% enhancement of methyl group upon irradiation of vinyl proton, while 5.6% enhancement between methyl group and vinyl proton of $\bf 35c$ was observed.

⁽³²⁾ Data for crystallographic analysis of **35c** was described in the Supporting Information.

^{(\$\}bar{3}\$) (a) Doorakian, G. A.; Freedman, H. H. J. Am. Chem. Soc. **1968**, 90, 3582-3584. (b) Doorakian, G. A.; Freedman, H. H. J. Am. Chem. Soc. **1968**, 90, 5310-5311. (c) Dolbier, W. R., Jr.; Koroniak, H.; Houk, K. N.; Sheu, C. Acc. Chem. Res. **1996**, 29, 471-477 and references therein.


⁽³⁴⁾ Determined by ¹H NMR.

⁽³⁵⁾ Compounds ${\bf 15c}$ (10%) and ${\bf 35c}$ (42%) were isolated after refluxing a solution of ${\bf 15c}$ in xylene for 9 h.

⁽³⁶⁾ Compounds **36** were prepared by the standard procedure described in this paper; see the Supporting Information.

To summarize the results so far obtained, there are several comments concerning the formation of the cyclobutene-fused bicyclic frameworks such as bicyclo[5.2.0]nonenes via thermal 4π -electrocyclic reaction, which should deserve mention. (i) The thermal 4π -electrocyclic reaction leading to cyclobutene-fused bicyclic frameworks proceeds whenever the substrates not only have a sevenmembered basic skeleton but also a 1,1-disubstituted olefin moiety at the C_2 -position such as 15, 32, and 38. In other words, one of two substituents at the allenic terminus of the starting tetrasubstituted allenes has to be a methyl group. (ii) Irrespective of the substitutent at the triple bond terminus, cyclobutene formation can be attained if the substrates meet the requirement (i). (iii) Cycloheptene derivatives 12, 30, 33, 34, 41, and 44, possessing a vinyl group, a 1,2-disubstituted olefin, or a trisubstituted olefin moiety at the C2-position, were unable to convert into the corresponding cyclobutenefused bicyclic compounds. (iv) Cyclohexene derivatives 7 never produced bicyclo[4.2.0] derivatives 46, even if compounds 7 had a 1,1-disubstituted olefin moiety at the C_2 -position.

Molecular model considerations of 3-alkylidene-2-vinyl-1-phenylsulfonylcyclohex-1-ene as well as 3-alkylidene-2-vinyl-1-phenylsulfonylcyclohept-1-ene skeletons provided clues to better understand the production of the 6-alkylidene-1-phenylsulfonylbicyclo[5.2.0]non-7-ene framework (Figure 1). A molecular model of 3-alkylidene-2-vinyl-1-phenylsulfonylcyclohept-1-ene skeletons indicates that the alkylidene moiety at the C_3 -position must be out of the plane p, on which a double bond between C_1 and C_2 , and an olefin moiety at the C_2 -position both exist. There are two significant conformers, which should be

FIGURE 1. Conformational analysis of cyclohexene and cycloheptene derivatives.

considered for cycloheptene derivatives with a vinyl group or a 1,1-di-substituted olefin part at the C₂-position; one is A^1 and the other A^2 . Conformer A^1 (R' = alkyl) would suffer from a serious nonbonding interaction with a phenylsulfonyl group. This would not be the case with conformer \mathbf{A}^2 where unfavorable interaction could not be predicted. By that means, conformer A^2 (R' = alkyl) must be thermodynamically preferred over conformer A^1 , the former of which would therefore readily undergo a thermal 4π -electrocyclic reaction resulting in the formation of the bicyclo[5.2.0]nonene framework. In the case of cycloheptene derivatives (R' = H), however, both conformers A^1 and A^2 no longer have such a significantly unfavorable interaction with a phenylsulfonyl group. Therefore, conformational bias due to the rotational barrier of a vinyl group at the C₂-position is not expected, and this would make its reactivity toward 4π -electrocyclic reaction very poor. A similar analysis would be applied to cycoheptene derivatives having a trisubstituted olefin functionality at the C2-position. Figure 1 shows two possible conformers A^3 and A^4 for compound 44 as a typical example. Conformer A³ has a nonbonding interaction with a phenylsulfonyl group like conformer A^1 does. This unfavorable interaction would shift the equilibrium to a more stable conformer A^4 , which might be expected to produce the corresponding cyclobutene derivative 45 (see Scheme 8). Because the thermal 4π -electrocylic reaction proceeds reversibly in a conrotatory ring-closing mode,33 conformer A4 must produce 45 with a cisstereochemical relationship between a phenylsulfonyl group and the Ca-Cb bond of the cyclohexyl ring, and this steric congestion would exclusively lead to 44 from **45**.³⁸ The conformation of 3-alkylidene-2-vinylcyclohex-1-ene is quite different from that of 3-alkylidene-2vinylcyclohept-1-ene. As can be seen in Figure 1, exami-

⁽³⁷⁾ Compounds ${\bf 12d,e}$ were exposed to xylene refluxing conditions leading to an intractable mixture.

nation of the molecular model indicates that six sp²hybridized carbon centers involving C1, C2, C3, and the C2-vinyl group can exist on the same plane. There are three possible conformers, \mathbf{B}^1 , \mathbf{B}^2 , and \mathbf{B}^3 , which must be considered for understanding the most preferred conformer. Conformer B1, leading to the cyclobutene derivative, would suffer from an unfavorable nonbonding interaction between Ha and R' on the vinyl group at the C₂-position, whereas a more serious interaction of a phenylsulfonyl group with R' as well as other interactions between two vinyl hydrogens are predicted in conformer ${\bf B}^3$. However, the C₂-vinyl group of conformer ${\bf B}^2$ can orient perpendicular to the plane, which consists of a double bond between C1 and C2, and a C3-alkylidene moiety, to avoid a nonbonding interaction with not only a phenylsulfonyl group but also the C₃-alkylidene moiety. Therefore, conformer \mathbf{B}^2 seems to be the most stable conformer among them. The fact that the bicyclo[4.2.0]octene framework could not be formed might reflect the stability of conformer \mathbf{B}^2 .

In summary, we have disclosed that the rhodium(I)catalyzed PKR of allenynes can be applicable for constructing azabicyclo[5.3.0]decadienone as well as oxabicyclo[5.3.0]decadienone frameworks. A reliable procedure for constructing a 10-monosubstituted-bicyclo[5.3.0]deca-1,7-dien-9-one ring system by the rhodium(I)-catalyzed PKR of allenynes was also developed under the condition of 10 atm of CO. Investigation of the rhodium(I)-catalyzed cycloisomerization of 4-phenylsulfonylnona-2,3-dien-8ynes under nitrogen atmosphere gave the corresponding cyclohexene derivatives, whereas the C₁-homologated allenynes produced cycloheptene derivatives and/or bicyclo-[5.2.0] nonene skeletons depending on the substitution pattern at the allenic terminus. Thus, proper choice of the starting allenynes and reaction conditions led to the selective formation of 2-phenylsulfonylbicyclo[5.3.0]deca-1,7-dien-9-ones (Pauson-Khand-type product), 3-alkylidene-1-phenylsulfonyl-2-vinylcycloheptene derivatives, and bicyclo[5.2.0] nonene frameworks. The application of this rhodium(I)-catalyzed PKR as well as the cycloisomerization reaction of allenynes to the synthesis of bioactive compounds is now in progress.

Experimental Section

3,8-Nonadiyn-2-ol (4a), 10a EtMgBr in THF (1.0 M, 5.2 mL, 5.2 mmol) was added to a 0 °C solution of 1,6-heptadiyne (3) (400 mg, 19.7 mmol) in THF (8 mL). After the mixture was heated at 50 °C for 1 h and then cooled to 0 °C, acetaldehyde (0.30 mL, 5.2 mmol) was rapidly added. The reaction mixture was further stirred for 15 min at 0 °C and then poured into water. The resulting mixture was extracted with Et₂O, and the extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane—AcOEt (5:1) to afford 4a (355 mg, 60%) as a colorless oil: IR 3308 cm $^{-1}$; 1 H NMR δ 4.51 (tq, 1H, J=7.0, 2.0 Hz), 2.37–2.27 (m, 4H), 1.97 (t, 1H, J=2.0 Hz), 1.73 (tt, 2H, J=7.0, 7.0 Hz), 1.43 (d, 3H, J=7.0 Hz); 13 C NMR δ 83.5, 83.2, 83.0, 68.9, 58.5, 27.4, 24.6, 17.6, 17.5.

9-(Trimethylsilyl)-3,8-nonadiyn-2-ol (4b). To a solution of 4a (102 mg, 0.750 mmol) in THF (4 mL) was added nBuLi in hexane (1.4 M, 1.6 mL, 2.3 mmol) at -78 °C. After the mixture was stirred for 1 h, TMSCl (0.60 mL, 4.5 mmol) was added at -78 °C, and the reaction mixture was stirred for 15 min at room temperature. Then, 10% aqueous HCl was added to the reaction mixture, which was stirred for 30 min and then extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residual oil was chromatographed with hexane-AcOEt (6:1) to afford 4b (161 mg, 76%) as a colorless oil: IR 3605, 2172 cm⁻¹; ¹H NMR δ 4.50-4.46 (m, 1H), 2.29 (t, 2H, J = 6.9 Hz), 2.28 (dt, 2H, J =6.9, 2.0 Hz), 1.68 (quin, 2H, J = 6.9 Hz), 1.40 (d, 3H, J = 6.6 HzHz); $^{13}{\rm C}$ NMR δ 106.2, 85.1, 83.4, 82.8, 58.4, 27.6, 24.6, 19.0, 17.7, 0.1; MS m/z 208 (M⁺, 3.8); HRMS calcd for $C_{12}H_{20}OSi$ 208.1283, found 208.1280.

9-Phenyl-3,8-nonadiyn-2-ol (4c). ^{10b} To a solution of 4a (134 mg, 0.990 mmol) in THF (5 mL) were successively added CuI (3.8 mg, 2.0×10^{-2} mmol), Pd(PPh₃)₂Cl₂ (6.9 mg, 1.0×10^{-2} mmol), and iodobenzene (0.20 mL, 2.0 mmol). After the mixture was stirred for 5 min at room temperature, iPr₂NH (1.4 mL, 10 mmol) was added, and the mixture was further stirred for 15 h. The precipitates were filtered off, and the filtrate was concentrated to leave a residual oil, which was chromatographed with hexane—AcOEt (3:1) to afford 4c (177 mg, 85%) as a pale yellow oil: IR 3601, 2239 cm⁻¹; ¹H NMR δ 7.56—7.41 (m, 2H), 7.30—7.25 (m, 3H), 4.53—4.47 (m, 1H), 2.52 (t, 2H, J = 7.0 Hz), 2.37 (t, 2H, J = 7.0 Hz), 1.98—1.96 (m, 1H), 1.80—1.76 (m, 2H), 1.41 (d, 3H, J = 7.2 Hz); ¹³C NMR δ 131.5, 128.2, 127.6, 123.7, 89.0, 83.5, 82.9, 81.2, 58.5, 27.8, 24.7, 18.5.

4-(Phenylsulfonyl)-2,3-nonadien-8-yne (5a). To a solution of **4a** (186 mg, 1.37 mmol) and Et₃N (0.60 mL, 4.1 mmol) in THF (14 mL) was gradually added PhSCl (590 mg, 4.10 mmol) at -78 °C. After being stirred for 1.5 h at the same temperature, the reaction was quenched by addition of saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (6:1) to afford the crude sulfoxide. To a solution of the crude sulfoxide in CH2- Cl_2 (12 mL) was added m-CPBA (300 mg, 1.70 mmol) at 0 °C. After being stirred for 30 min, the reaction was quenched by addition of saturated aqueous Na₂S₂O₃ and NaHCO₃, and the mixture was extracted with CH2Cl2. The extract was washed with brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (5:1) to afford 5a (232 mg, 71% for two steps) as a colorless oil: IR 3308, 1960, 1306, 1150 cm⁻¹; ¹H NMR δ 7.91–7.87 (m, 2H), 7.65–7.50 (m, 3H), 5.74 (tq, 1H, J = 7.3, 3.1 Hz), 2.41–2.34 (m, 2H), 2.17 (dt, 2H, J = 6.9, 2.6 Hz), 1.90 (t, 1H, J = 2.6 Hz), 1.73 (d, 6H, J)J = 7.3 Hz); ¹³C NMR δ 204.3, 140.2, 133.3, 129.0, 128.0, 112.1, 96.4, 83.2, 68.9, 26.4, 25.8, 17.5, 13.4; MS m/z 260 (M⁺, 0.6); HRMS calcd for $C_{15}H_{16}O_2S$ 260.0871, found 260.0881.

N-(5-Hydroxy-3-pentynyl)-N-2-propynyl-(4-methylben**zene**)sulfonamide (21a). To a solution of 16^{17a} (790 mg, 3.80 mmol), $PPh_3\,(1.1~g,\,4.1~mmol),$ and $\boldsymbol{18}^{26a}\,(597~mg,\,3.24~mmol)$ in THF (10 mL) was added dropwise DEAD (0.74 mL, 4.1 mmol) at 0 °C. After the mixture was stirred for 2 h at room temperature, THF was evaporated off. The residue was passed through a short pad of silica gel with hexane-AcOEt (7:1) to afford the crude sulfonamide. To a solution of the crude sulfonamide in EtOH (15 mL) was added PPTS (63 mg, 0.25 mmol) at room temperature. Afrer the mixture was stirred for 3 h at 55 °C, EtOH was evaporated off. Chromatography of the residue with hexane-AcOEt (2:1) afforded **21a** (505 mg, 53%) as a colorless oil: IR 3607, 3520, 3306, 1348, 1306, 1163 cm $^{-1};\,^{1}\!\mathrm{H}$ NMR δ 7.74 (d, 2H, J=8.3 Hz), 7.30 (d, 2H, J=8.3Hz), 4.24-4.22 (m, 2H), 4.19 (d, 2H, J = 2.3 Hz), 3.38 (t, 2H, J = 7.3 Hz), 2.56 (tt, 2H, J = 7.3, 2.2 Hz), 2.43 (s, 3H), 2.08 (t, 1H, J = 2.3 Hz), 1.74 (br s, 1H); ¹³C NMR δ 143.7, 135.6, 129.5, 127.5, 82.1, 80.5, 73.9, 50.9, 45.3, 37.0, 21.4, 18.9; MS m/z 291

⁽³⁸⁾ We tried to convert **44** into **45** with a *trans*-relationship between a phenylsulfonyl group and the C_a-C_b bond by a disrotatory ring-closing mode. Thus, a solution of **44** in CH_2Cl_2 was irradiated with a high-pressure mercury lamp through a Pyrex filter to afford a mixture of **44** and its isomer with (Z)-benzylidene group at the C_3 -position. The formation of **45** with a *trans*-relationship between a phenylsulfonyl group and the C_a-C_b bond could not be detected.

 $(M^+,\ 0.1);\ HRMS$ calcd for $C_{15}H_{17}NO_3S$ 291.0929, found 291.0923.

N-[3-(Phenylsulfonyl)-3,4-pentadienyl]-*N*-2-propynyl-(4-methylbenzene)sulfonamide (22a). According to the same procedure described for preparation of **5a**, **22a** (304 mg, 72%) was obtained from **21a** (297 mg, 1.02 mmol) as colorless needles: mp 111.5–113 °C (hexane–AcOEt); IR 3308, 1969, 1936, 1350, 1308, 1161 cm⁻¹; ¹H NMR δ 7.94–7.90 (m, 2H), 7.69–7.53 (m, 5H), 7.30–7.26 (m, 2H), 5.43 (t, 2H, J=2.3 Hz), 3.33 (t, 2H, J=6.8 Hz), 2.60–2.52 (m, 2H), 2.42 (s, 3H), 2.01 (t, 1H, J=2.3 Hz); ¹³C NMR δ 208.1, 143.7, 139.6, 135.5, 133.6, 129.5, 129.1, 128.1, 127.5, 109.6, 85.0, 76.3, 74.0, 44.9, 36.7, 25.6, 21.5; MS m/z 415 (M⁺, 0.6). Anal. Calcd for C₂₁H₂₁NO₄S₂: C, 60.70; H, 5.10; N, 3.32. Found: C, 60.61; H, 5.10; N, 3.32.

5-(2-Propynyloxy)-2-pentyn-1-ol (24a). tBuOK (300 mg, 2.70 mmol) was added to a solution of 18 (103 mg, 0.559 mmol) in THF (6 mL) at 0 °C. After the mixture was stirred for 30 min, propargyl bromide (0.60 mL, 6.7 mmol) was added at 0 °C. The mixture was further stirred overnight at room temperature, and the reaction mixture was quenched by addition of water, extracted with Et₂O, washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (7:1) gave 23a (120 mg). To a solution of 23a (457 mg, 2.05 mmol) in EtOH (16 mL) was added PPTS (52 mg, 0.21 mmol) at room temperature. The mixture was stirred for 1.5 h at 55 °C and then cooled to room temperature. The reaction mixture was concentrated to dryness, and the residue was chromatographed with hexane-AcOEt (2:1) to give **24a** (273 mg, 92% for two steps) as a pale yellow oil: IR 3609, 3308 cm $^{-1}$; ¹H NMR δ 4.24 $^{-4}$.18 (m, 4H), 3.64 (t, 2H, J = 6.8 Hz), 2.52 (tt, 2H, J = 6.8, 2.3 Hz), 2.44 (t, 2H, 3.64)1H, J=2.3 Hz), 1.97 (m, 1H); 13 C NMR δ 82.2, 79.6, 79.1, 74.7, 67.8, 57.9, 50.7, 19.7; MS m/z 138 (M+, 0.1); HRMS calcd for C₈H₁₀O₂ 138.0681, found 138.0683

5-(3-Trimethylsilyl-2-propynyloxy)-2-pentyn-1-ol (24b). nBuLi (4.8 mL, 6.4 mmol, 1.4 M in hexane) was added to a solution of $\bf 23a$ (954 mg, 4.28 mmol) in THF (9.0 mL) at -78°C. After the mixture was stirred for 1 h, TMSCl (1.6 mL, 13 mmol) was added at same temperature. The mixture was stirred for 1 h at room temperature, and the reaction mixture was quenched by addition of water, extracted with AcOEt, washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (8:1) gave **23b** (670 mg). To a solution of **23b** in EtOH (18 mL) was added PPTS (57 mg, 0.23 mmol) at room temperature. Then the mixture was stirred for 3 h at 55 °C, and the reaction mixture was concentrated to dryness. Chromatography of the residue with hexane-AcOEt (3:1) gave 24b (336 mg, 36% for three steps) as a pale yellow oil: IR 3609, 3433, 2174 cm⁻¹; ¹H NMR δ 4.25–4.18 (m, 4H), 3.63 (t, 2H, J = 6.9 Hz), 2.53 (tt, 2H, $J=6.9,\,2.0$ Hz), 1.72 (s, 1H), 0.18 (s, 9H); $^{13}{\rm C}$ NMR δ 101.0, 91.6, 82.7, 79.5, 67.9, 58.9, 51.2, 19.9, -0.3; MS m/z 210 $(M^+, 0.1)$; HRMS calcd for $C_{11}H_{18}O_2Si$ 210.1076, found 210.1062.

3-(Phenylsulfonyl)-5-(2-propynyloxy)-1,2-pentadiene (25a). According to the same procedure described for preparation of **5a, 25a** (463 mg, 82%) was obtained from **24a** (301 mg, 2.18 mmol) as a colorless oil: IR 3308, 1971, 1938, 1308, 1151 cm⁻¹; ¹H NMR δ 7.92–7.89 (m, 2H), 7.67–7.51 (m, 3H), 5.40 (t, 2H, J = 3.3 Hz), 4.06 (d, 2H, J = 2.3 Hz), 3.61 (t, 2H, J = 6.6 Hz), 2.55 (tt, 2H, J = 6.6, 3.3 Hz), 2.39 (t, 1H, J = 2.3 Hz); ¹³C NMR δ 208.1, 140.0, 133.5, 129.1, 128.1, 109.9, 84.4, 79.3, 74.6, 67.1, 58.0, 27.2; MS m/z 262 (M⁺, 0.4); HRMS calcd for $C_{14}H_{14}O_{3}S$ 262.0664, found 262.0673.

General Procedure for Ring-Closing Reaction with Rh(I) Catalyst under an Atmosphere of CO. To a solution of allenyne (0.10 mmol) in toluene (1.0 mL) was added 2.5 mol % of Rh(I) catalyst. The reaction mixture was refluxed under a CO atmosphere until the complete disappearance of the starting material as indicated by TLC. Toluene was evaporated off, and the residual oil was chromatographed with hexane—

AcOEt to afford cyclized products. Chemical yields are summarized in Tables 1, 2, 4, and 5.

General Procedure for Ring-Closing Reaction with Rh(I) Catalyst under 5–20 atm of CO. To a solution of allenyne (0.10 mmol) in toluene (1.0 mL) was added 2.5 mol % of [RhCl(CO)₂]₂. The reaction mixture was heated at 120 °C (the oil bath temperature) under CO pressure shown in the tables until the complete disappearance of the starting material as indicated by TLC. Toluene was evaporated off, and the residual oil was chromatographed with hexane—AcOEt to afford cyclized products. Chemical yields are summarized in Tables 2–4 and Schemes 4 and 6.

General Procedure for Ring-Closing Reaction with Rh(I) Catalyst under N_2 . To a solution of allenyne (0.10 mmol) in toluene or xylene (1.0 mL) was added 2.5 mol % of Rh(I) catalyst. The reaction mixture was refluxed under a N_2 atmosphere until the complete disappearance of the starting material as indicated by TLC. Solvent was evaporated off, and the residual oil was chromatographed with hexane—AcOEt to afford cyclized products. Chemical yields are summarized in Tables 6–10 and Schemes 7 and 8.

9-Methyl-2-(phenylsulfonyl)bicyclo[4.3.0]nona-1,6-dien-8-one (6a): colorless plates; mp 88–88.5 °C (Et₂O); IR 1705, 1308, 1151 cm $^{-1}$; 1 H NMR δ 7.90–7.87 (m, 2H), 7.68–7.53 (m, 3H), 6.12 (s, 1H), 3.58 (q, 1H, J=7.3 Hz), 2.77–2.57 (m, 2H), 2.48 (dt, 2H, J=17.5, 5.6 Hz), 2.27–2.16 (m, 1H), 1.85–1.74 (m, 2H), 1.54 (d, 3H, J=7.3 Hz); 13 C NMR δ 207.0, 167.2, 148.9, 139.5, 134.3, 133.8, 130.4, 129.3, 128.0, 43.5, 25.82, 25.79, 21.7, 18.4; MS m/z 288 (M $^{+}$, 26.3). Anal. Calcd for C16H16O3S: C, 66.64; H, 5.59. Found: C, 66.57; H, 5.61.

9,9-Dimethyl-2-(phenylsulfonyl)-7-(trimethylsilyl)bicyclo[4.3.0]nona-1,6-dien-8-one (6e): pale yellow plates; mp 122 °C (Et₂O); IR 1692, 1308, 1155 cm $^{-1}$; $^1\mathrm{H}$ NMR δ 7.92–7.88 (m, 2H), 7.67–7.52 (m, 3H), 2.68 (t, 2H, J=6.3 Hz), 2.31 (t, 2H, J=6.3 Hz), 1.74 (tt, 2H, J=6.3 Hz), 1.54 (s, 6H), 0.26 (s, 9H); $^{13}\mathrm{C}$ NMR δ 212.9, 172.1, 153.3, 141.6, 140.0, 134.6, 133.4, 129.2, 127.8, 47.2, 27.6, 27.4, 22.6, 22.0, -0.7; MS m/z 374 (M $^+$, 26). Anal. Calcd for $\mathrm{C}_{19}\mathrm{H}_{20}\mathrm{O}_3\mathrm{SSi}$: C, 64.13; H, 7.00. Found: C, 64.06; H, 7.13.

2-Ethenyl-3-methylene-1-(phenylsulfonyl)cyclohexene (7a): colorless oil; IR 1306, 1148 cm $^{-1}$; 1 H NMR δ 7.86 $^{-}$ 7.84 (m, 2H), 7.59 $^{-}$ 7.55 (m, 1H), 7.51 $^{-}$ 7.48 (m, 2H), 6.79 (ddt, 1H, $J=17.7,\ 11.7,\ 1.7$ Hz), 5.44 $^{-}$ 5.42 (m, 2H), 5.21 $^{-}$ 5.20 (m, 1H), 5.10 (dd, 1H, $J=17.7,\ 1.7$ Hz), 2.58 $^{-}$ 2.55 (m, 2H), 2.36 $^{-}$ 2.33 (m, 2H), 1.78 $^{-}$ 1.73 (m, 2H); 13 C NMR δ 144.8, 142.5, 141.5, 136.1, 133.0, 131.8, 128.8, 127.6, 121.5, 119.9, 31.5, 27.3, 22.6; MS m/z 260 (M $^{+}$, 0.5); HRMS calcd for $C_{15}H_{16}O_{2}S$ 260.0871, found 260.0867.

2-(1-Methylethenyl)-1-(phenylsulfonyl)-3-[(E)-(trimethylsilyl)methylene]cyclohexene (7e): colorless oil; IR 1304, 1150 cm $^{-1}$; 1 H NMR δ 7.90 $^{-1}$.84 (m, 2H), 7.60 $^{-1}$.45 (m, 3H), 5.98 (s, 1H), 5.17 $^{-5}$.16 (m, 1H), 4.57 $^{-4}$.56 (m, 1H), 2.55 $^{-2}$.53 (m, 4H), 1.84 (s, 3H), 1.80 $^{-1}$.58 (m, 2H), 0.11 (s, 9H); 13 C NMR δ 150.7, 148.5, 141.7, 141.1, 135.7, 134.5, 132.9, 128.7, 128.0, 117.0, 30.3, 27.2, 24.1, 22.6, $^{-0}$.3; MS m/z 346 (M $^{+}$, 0.2); HRMS calcd for $C_{19}H_{26}O_{2}SSi$ 346.1423, found 346.1430.

10-Methyl-2-(phenylsulfonyl)bicyclo[5.3.0]deca-1,7-dien-9-one (11a): colorless oil; IR 1705, 1308, 1148 cm $^{-1}$; ¹H NMR δ 7.90 $^{-1}$ 7.88 (m, 2H), 7.67 $^{-1}$ 7.55 (m, 3H), 6.12 (s, 1H), 3.59 (q, 1H, J = 7.3 Hz), 2.74 $^{-1}$ 2.54 (m, 2H), 2.25 $^{-1}$ 2.19 (m, 1H), 1.84 $^{-1}$ 1.75 (m, 4H), 1.53 (d, 3H, J = 7.3 Hz); ¹³C NMR δ 207.3, 172.8, 152.6, 139.9, 136.6, 133.64, 133.59, 129.3, 127.8, 46.4, 28.8, 26.5, 25.8, 22.8, 19.6; MS m/z 302 (M $^{+}$, 1.7); HRMS calcd for $C_{17}H_{18}O_{3}S$ 302.0977, found 302.0976.

2-Ethenyl-3-methylene-1-(phenylsulfonyl)cycloheptene (12a): colorless oil; IR 1308, 1148 cm $^{-1}$; $^{1}\mathrm{H}$ NMR δ 7.97 (dd, 1H, J=17.0, 11.0 Hz), 7.90–7.48 (m, 5H), 5.56 (dd, 1H, J=17.0, 1.7 Hz), 5.48 (dd, 1H, J=11.0, 1.7 Hz), 5.35 (d, 1H, J=1.0 Hz), 4.80 (d, 1H, J=1.0 Hz), 2.55–2.50 (m, 2H), 2.15–2.11 (m, 2H), 1.71–1.62 (m, 2H), 1.37–1.29 (m, 2H); $^{13}\mathrm{C}$ NMR δ 152.2, 145.9, 141.6, 134.7, 133.0, 131.8, 129.0, 127.2, 124.0,

116.8, 33.9, 30.8, 30.1, 24.7; MS $\it m/z$ 274 (M+, 5.0); HRMS calcd for $\rm C_{16}H_{18}O_2S$ 274.1028, found 274.1019.

3-Methylene-2-(1-methylethenyl)-1-(phenylsulfonyl)-cycloheptene (15a): colorless oil; IR 1304, 1146 cm $^{-1}$; $^{1}\mathrm{H}$ NMR δ 7.88–7.86 (m, 2H), 7.58–7.48 (m, 3H), 5.24 (s, 1H), 5.20 (d, 1H, J=1.5 Hz), 5.01 (t, 1H, J=1.5 Hz), 4.76 (d, 1H, J=1.0 Hz), 2.57–2.55 (m, 2H), 2.33 (t, 2H, J=6.4 Hz), 1.74–1.69 (m, 5H), 1.60–1.57 (m, 2H); $^{13}\mathrm{C}$ NMR δ 155.7, 146.1, 143.6, 141.7, 138.1, 132.7, 128.7, 128.3, 118.9, 115.9, 34.5, 29.4, 29.1, 24.7, 21.6; MS m/z 288 (M $^{+}$, 81); HRMS calcd for $\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{O}_{2}\mathrm{S}$ 288.1184, found 288.1187.

N-(4-Methylbenzenesulfonyl)-6-(phenylsulfonyl)-3-azabicyclo[5.3.0]deca-1(10),6-dien-9-one (26a): colorless plates; mp 172–173 °C (hexane–AcOEt); IR 1701, 1350, 1308, 1159 cm⁻¹; ¹H NMR δ 7.82–7.77 (m, 2H), 7.72–7.51 (m, 5H), 7.28–7.22 (m, 2H), 6.28 (s, 1H), 4.48 (s, 2H), 3.58 (t, 2H, J = 6.3 Hz), 3.24 (s, 2H), 2.85 (t, 2H, J = 6.3 Hz), 2.42 (s, 3H); ¹³C NMR δ 201.7, 166.2, 145.9, 144.2, 139.5, 136.9, 135.8, 134.1, 133.9, 129.8, 129.6, 127.6, 127.2, 47.4, 44.6, 41.0, 27.1, 21.5; MS m/z 443 (M⁺, 17.4). Anal. Calcd for C₂₂H₂₁NO₅S₂: C, 59.57; H, 4.77; N, 3.16. Found: C, 59.66; H, 4.94; N, 3.15.

6-(Phenylsulfonyl)-3-oxabicyclo[5.3.0]deca-1(10),6-dien-9-one (27a): colorless oil; IR 1705, 1308, 1151 cm $^{-1}$; 1 H NMR δ 7.90–7.87 (m, 2H), 7.67–7.55 (m, 3H), 6.30 (s, 1H), 4.67 (s, 2H), 3.91 (t, 2H, J=5.6 Hz), 3.61 (s, 2H), 2.99 (t, 2H, J=5.6 Hz); 13 C NMR δ 201.9, 170.0, 145.1, 139.9, 135.9, 135.0, 133.9, 129.5, 127.6, 69.1, 66.6, 41.5, 31.1; MS m/z 290 (M $^+$, 2.5); HRMS calcd for $\rm C_{15}H_{14}O_{4}S$ 290.0613, found 290.0614.

N-(4-Methylbenzenesulfonyl)-8-methyl-6-(phenylsulfonyl)-10-(trimethylsilyl)-3-azabicyclo[5.3.0]deca-1(10),6-dien-9-one (28): colorless plates; mp 131–132 °C (hexane–AcOEt); IR 1701, 1350, 1308, 1159, 1150 cm⁻¹; ¹H NMR δ 7.83–7.80 (m, 2H), 7.70–7.64 (m, 1H), 7.60–7.54 (m, 4H), 7.29–7.26 (m, 2H), 4.76 (d, 1H J=17.5 Hz), 4.25 (d, 1H, J=17.5 Hz), 3.64 (q, 1H J=7.3 Hz), 3.41–3.20 (m, 2H), 2.78–2.57 (m, 2H), 2.42 (s, 3H), 1.26 (d, 3H, J=7.3 Hz), 0.35 (s, 9H); ¹³C NMR δ 209.9, 172.1, 153.6, 147.9, 143.9, 139.5, 136.1, 133.9, 130.2, 129.7, 129.4, 127.7, 127.0, 46.6, 44.4, 27.1, 21.4, 18.9, –0.8; MS m/z 529 (M⁺, 0.7); HRMS calcd for C₂₆H₃₁NO₅S₂-Si 529.1413, found 529.1420.

4-Ethenyl-1-(4-methylbenzenesulfonyl)-3-[(Z)-phenylmethylene]-5-(phenylsulfonyl)-2,3,6,7-tetrahydro-1H-azepine (30): colorless plates; mp 126–127 °C (hexane–AcOEt); IR 1340, 1306, 1163, 1151 cm $^{-1}$; $^{1}\mathrm{H}$ NMR δ 7.80–7.78 (m, 2H), 7.68 (dd, 2H, J=17.0, 10.5 Hz), 7.53–7.43 (m, 5H), 7.32–7.29 (m, 4H), 7.25–7.16 (m, 3H), 6.45 (s, 1H), 5.43 (dd, 1H, J=10.7, 1.5 Hz), 5.42 (dd, 1H, J=17.0, 1.5 Hz), 3.82 (s, 2H), 3.01 (t, 2H, J=6.1 Hz), 2.65 (t, 2H, J=6.1 Hz), 2.33 (s, 3H); $^{13}\mathrm{C}$ NMR δ 151.1, 143.8, 141.1, 136.5, 134.6, 133.6, 133.3, 132.8, 132.6, 132.2, 129.8, 129.4, 129.3, 128.6, 128.5, 127.6, 127.3, 125.3, 47.5, 45.6, 29.3, 21.5; MS mlz 505 (M $^+$, 4.5). Anal. Calcd for $\mathrm{C}_{28}\mathrm{H}_{27}\mathrm{NO}_4\mathrm{S}_2$: C, 66.51; H, 5.38; N, 2.77. Found: C, 66.38; H, 5.55; N, 2.72.

N-(4-Methylbenzenesulfonyl)-8,8-dimethyl-6-(phenylsulfonyl)-10-(trimethylsilyl)-3-azabicyclo[5.3.0]deca-1(10),6-dien-9-one (31): colorless needles; mp 181–181.5 °C (hexane–AcOEt); IR 1699, 1350, 1308, 1157 cm $^{-1}$; 1 H NMR δ 7.86–7.81 (m, 2H), 7.73–7.50 (m, 5H), 7.30–7.24 (m, 2H), 4.48 (s, 2H), 2.99 (t, 2H, J = 6.3 Hz), 2.64 (t, 2H, J = 6.3 Hz), 2.41 (s, 3H), 1.43 (s, 6H), 0.35 (s, 9H); 13 C NMR δ 212.0, 171.8, 157.7, 147.2, 144.0, 139.5, 136.0, 133.9, 131.9, 129.8, 129.4, 128.1, 127.0, 50.2, 46.2, 45.1, 28.9, 22.3, 21.5, –0.7; MS m/z 543 (M $^+$, 8.3); HRMS calcd for C₂₇H₃₃NO₅S₂Si 543.1569, found 543.1569.

1-(4-Methylbenzenesulfonyl)-4-(1-methylethenyl)-5-(phenylsulfonyl)-3-[(Z)-(trimethylsilyl)methylene]-2,3,6,7-tetrahydro-1H-azepine (32): colorless needles; mp 52–53 °C (hexane–AcOEt); IR 1350, 1306, 1161, 1142 cm $^{-1}$; ^{1}H NMR δ 7.91–7.90 (m, 2H), 7.65–7.63 (m, 3H), 7.58–7.48 (m, 2H), 7.33–7.32 (m, 2H), 5.92 (s, 1H), 5.09 (s, 1H), 5.04 (s, 1H), 3.93 (s, 2H), 3.37–3.36 (m, 2H), 2.74–2.72 (m, 2H), 2.43 (s, 3H), 1.14 (s, 3H), 0.13 (s, 9H); 13 C NMR δ 154.4, 149.4, 143.6, 141.1, 140.6, 136.3, 135.4, 134.2, 132.8, 129.9, 129.2, 128.5, 127.0,

120.8, 49.0, 45.4, 27.1, 21.5, 20.5, -0.6; MS m/z 512 (M⁺, 1.2). Anal. Calcd for $C_{26}H_{33}NO_4S_2Si$: C, 60.55; H, 6.45; N, 2.72. Found: C, 60.46; H, 6.73; N, 2.64.

4-Ethenyl-1-(4-methylbenzenesulfonyl)-3-methylene-5-(phenylsulfonyl)-2,3,6,7-tetrahydro-1*H***-azepine (33):** colorless plates; mp 73–74 °C (hexane—AcOEt); IR 1340, 1306, 1163, 1148 cm⁻¹; ¹H NMR δ 7.89–7.85 (m, 2H), 7.77–7.51 (m, 6H), 7.30–7.27 (m, 2H), 5.63–5.61 (m, 1H), 5.52–5.49 (m, 1H), 5.46–5.44 (m, 1H), 5.16–5.13 (m, 1H), 3.76 (s, 2H), 3.12 (t, 2H, J=6.0 Hz), 2.73 (t, 2H, J=6.0 Hz), 2.42 (s, 3H); ¹³C NMR δ 149.8, 143.6, 141.0, 140.7, 133.3, 132.9, 131.5, 129.8, 129.28, 129.27, 127.3, 127.2, 124.9, 121.9, 50.6, 44.8, 29.8, 21.5; MS m/z 429 (M⁺, 2.4); HRMS calcd for C₂₂H₂₃NO₄S 429.1068, found 429.1068. Anal. Calcd for C₂₂H₂₃NO₄S₂: C, 61.51; H, 5.40; N, 3.26. Found: C, 61.40; H, 5.57; N, 3.21.

4-Ethenyl-1-(4-methylbenzenesulfonyl)-5-(phenylsulfonyl)-3-[(Z)-(trimethylsilyl)methylene]-2,3,6,7-tetrahydro-1H-azepine (34): colorless needles; mp 49–50 °C (hexane—AcOEt); IR 1352, 1306, 1165 cm $^{-1}$; ^{1}H NMR δ 8.01–7.94 (m, 2H), 7.83–7.61 (m, 6H), 7.50–7.26 (m, 2H), 5.77 (s, 1H), 5.57–5.45 (m, 2H), 3.90 (s, 2H), 3.16 (t, 2H, J = 6.1 Hz), 2.79 (t, 2H), J = 6.1 Hz), 2.54 (s, 3H), 0.28 (s, 9H); 13 C NMR δ ? 151.5, 148.1, 143.7, 141.2, 137.2, 134.0, 133.2, 131.6, 130.5, 129.8, 129.2, 127.4, 127.2, 124.9, 49.4, 44.9, 29.0, 21.5, -0.4; MS m/z 501 (M $^+$, 0.7). Anal. Calcd for C₂₅H₃₁NO₄S₂Si: C, 59.85; H, 6.23; N, 2.79. Found: C, 59.53; H, 6.47; N, 2.75.

9-Methyl-2-methylene-7-(phenylsulfonyl)bicyclo[5.2.0]-non-1(9)-ene (35a): colorless oil; IR 1296, 1138 cm $^{-1}$; 1 H NMR δ 7.89 $^{-}$ 7.82 (m, 2H), 7.63 $^{-}$ 7.45 (m, 3H), 5.02 (s, 1H), 4.93 (s, 1H), 2.95 $^{-}$ 2.84 (m, 1H), 2.75 $^{-}$ 2.67 (m, 1H), 2.56 $^{-}$ 2.51 (m, 1H), 2.39 (dd, 1H, J=15.5, 6.6 Hz), 2.25 $^{-}$ 2.05 (m, 2H), 1.99 $^{-}$ 1.89 (m, 1H), 1.84 $^{-}$ 1.73 (m, 1H), 1.71 $^{-}$ 1.53 (m, 1H), 1.63 (s, 3H), 1.38 $^{-}$ 1.23 (m, 1H); 13 C NMR δ 143.7, 142.4, 139.9, 136.8, 133.2, 129.6, 128.2, 112.3, 69.9, 42.6, 36.0, 33.6, 28.0, 27.3, 15.2; FABMS m/z 289 (M $^{+}$ +1, 6.2); FABHRMS calcd for $C_{17}H_{20}O_{2}S$ 289.1262, found 289.1266.

9-Phenyl-2-[(E)-6-phenylmethylene]-7-(phenylsulfonyl)-bicyclo[5.2.0]non-1(9)-ene (37a): colorless needles; mp 195 – 195.5 °C (hexane); IR 1298, 1140 cm $^{-1}$; ¹H NMR δ 7.98 (d, 2H, J = 7.6 Hz), 7.61 $^{-1}$ 7.26 (m, 13H), 6.89 (s, 1H), 3.12 (d, 1H, J = 14.0 Hz), 3.07 $^{-1}$ 3.02 (m, 1H), 2.92 $^{-1}$ 2.73 (m, 2H), 2.39 (d, 1H, J = 14.0 Hz), 2.23 $^{-1}$ 2.11 (m, 1H), 2.10 $^{-1}$ 1.73 (m, 3H), 1.54 $^{-1}$ 3.8 (m, 1H); ¹³C NMR δ 141.5, 138.8, 137.11, 137.07, 136.9, 133.7, 133.6, 129.7, 129.0, 128.6, 128.41, 128.36, 128.3, 127.0, 126.4, 69.3, 39.5, 34.2, 30.7, 27.6, 27.4; MS m/z 426 (M $^{+}$, 0.1); HRMS calcd for $C_{28}H_{26}O_{2}S$ 426.1653, found 426.1651.

2-[1-(Ethoxycarbonyl)ethenyl]-3-[(E)-phenylmethylene] 1-(phenylsulfonyl)cycloheptene (**38d):** colorless oil; IR 1717, 1304, 1144 cm⁻¹; ¹H NMR δ 7.89–7.85 (m, 2H), 7.62–7.47 (m, 3H), 7.36–7.21 (m, 5H), 6.52 (d, 1H, J = 1.2 Hz), 6.51 (s, 1H), 5.74 (d, 1H, J = 1.2 Hz), 4.09 (q, 2H, J = 7.2 Hz), 2.65 (t, 2H, J = 6.1 Hz), 2.59 (t, 2H, J = 6.1 Hz), 1.83 (quin, 2H, J = 6.1 Hz), 1.55 (quin, 2H, J = 6.1 Hz), 1.23 (t, 3H, J = 7.2 Hz); ¹³C NMR δ 164.8, 149.3, 140.9, 140.3, 139.8, 138.5, 136.4, 133.3, 132.9, 129.3, 129.0, 128.7, 128.34, 128.28, 127.5, 60.9, 29.6, 28.7, 26.2, 24.3, 14.0; MS m/z 422 (M+, 1.8); HRMS calcd for $C_{25}H_{26}O_4S$ 422.1552, found 422.1551.

N-(4-Methylbenzenesulfonyl)-9-methyl-7-(phenylsulfonyl)-2-[(*Z*)-(trimethylsilyl)methylene]-4-azabicyclo-[5.2.0]non-1(9)-ene (39): colorless oil; IR 1333, 1157, 1146 cm⁻¹; ¹H NMR δ 7.81–7.79 (m, 2H), 7.76–7.61 (m, 2H), 7.48–7.45 (m, 2H), 7.27–7.25 (m, 3H), 5.47 (s, 1H), 4.65 (d, 1H, *J* = 6.6 Hz), 4.09–4.05 (m, 2H), 3.68–3.63 (m, 1H), 2.68–2.65 (m, 1H), 2.47–2.43 (m, 3H), 2.40 (s, 3H), 2.07–2.00 (m, 2H), 1.50 (s, 3H), 0.26 (s, 9H); ¹³C NMR δ 148.1, 145.0, 144.0, 139.9, 137.8, 135.8, 133.7, 129.6, 129.5, 128.2, 126.8, 68.8, 53.4, 49.9, 42.3, 33.9, 21.4, 15.0, 0.1; MS m/z 515 (M⁺, 0.9); HRMS calcd for $C_{26}H_{33}NO_4S_2Si$ 289.1262, found 289.1266.

2-[(E)- and (Z)-1-Methyl-1-propenyl]-3-[(E)-phenylmethylene]-1-(phenylsulfonyl)cycloheptene (41). A 50:50 mixture of (E)- and (Z)-41 was obtained as colorless plates: mp 73–74 °C (hexane–AcOEt); IR 1304, 1146 cm⁻¹;

JOC Article

¹H NMR δ 7.89–7.83 (m, 2H), 7.59–7.50 (m, 3H), 7.36–7.24 (m, 5H), 6.60 (s, 50/100 × 1H), 6.56 (s, 50/100 × 1H), 5.54–5.50 (m, 50/100 × 1H), 5.43 (q, 50/100 × 1H, J = 6.6 Hz), 2.78–2.73 (m, 50/100 × 1H), 2.69–2.46 (m, 50/100 × 6H), 2.34–2.28 (m, 50/100 × 1H), 2.17–2.01 (m, 50/100 × 2H), 1.94 (q, 50/100 × 2H, J = 7.6 Hz), 1.84–1.71 (m, 50/100 × 6H), 1.66–1.51 (m, 50/100 × 5H), 1.47–1.42 (m, 50/100 × 1H), 1.07 (t, 50/100 × 3H, J = 7.6 Hz), 0.92 (t, 50/100 × 3H, J = 7.6 Hz); 13 C NMR δ 158.0, 154.0, 142.4, 141.3, 140.9, 139.9, 139.5, 138.9, 137.9, 137.4, 137.3, 137.0, 136.8, 133.6, 132.7, 132.5, 129.0, 128.9, 128.8, 128.6, 128.33, 128.30, 128.29, 128.1, 127.5, 127.4, 127.3, 121.8, 29.9, 29.8, 29.5, 29.3, 28.8, 27.2, 26.9, 24.8, 24.7, 22.9, 15.4, 13.7, 13.0, 12.3; MS m/z 392 (M⁺, 0.3). Anal. Calcd for C₂₃H₂₈O₂S: C, 76.49; H, 7.19. Found: C, 76.35; H, 7.38.

2-(1-Cyclohexenyl)-3-[(*E***)-phenylmethylene]-1-(phenylsulfonyl)cycloheptene (44):** pale yellow oil; IR 1288, 1140 cm⁻¹; ¹H NMR δ 7.85–7.84 (m, 2H), 7.57–7.49 (m, 3H), 7.36–7.23 (m, 5H), 6.59 (s, 1H), 5.59–5.58 (m, 1H), 2.73 (t, 2H, J = 5.6 Hz), 2.51–2.50 (m, 2H), 2.09–2.07 (m, 2H), 1.84 (quin, 2H, J = 6.2 Hz), 1.72 (quin, 2H, J = 6.2 Hz), 1.67–1.66 (m, 2H), 1.52–1.47 (m, 2H), 1.44–1.39 (m, 2H); ¹³C NMR δ 157.0, 142.6,

 $139.6,\ 137.6,\ 136.8,\ 136.4,\ 132.6,\ 132.4,\ 130.0,\ 128.9,\ 128.6,\ 128.3,\ 127.8,\ 127.3,\ 29.9,\ 28.8,\ 27.2,\ 27.0,\ 25.3,\ 24.8,\ 22.2,\ 21.4;$ MS $\emph{m/z}\ 404\ (M^+,\ 52.0);$ HRMS calcd for $C_{26}H_{28}O_2S\ 404.1810,$ found 404.1800.

Acknowledgment. This work was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for which we are thankful.

Supporting Information Available: ¹H and ¹³C NMR spectra for compounds 4b,d-f, 5a,c,d,f, 6c, 7a-f, 9b-d,f, 10a-d,f, 11a,f, 12a-e, 13b,c, 14a, 15a-c, 21a,d, 24a,b, 25a,b, 27a, 28, 29, 31, 35a,c, 36a-e, 37a-c,e, 38d,e, 39, and 44; characterization data for compounds 4d-f, 5b-f, 6b,c, 7b-d, f, 9a-f, 10a-f, 11b-f, 12b-e, 13a-c, 14a-c, 15b,c, 21b-g, 22b-g, 25b, 26b,c, 27b, 29, 35b,c, 36a-e, 37b-e, 38e, 40, and 43; and X-ray crystallographic data for 35c. This material is available free of charge via the Internet at http://pubs.acs.org.

JO050770Z